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Abstract 
Motivation: The crucial role of protein interactions and the difficulty in characterising them 

experimentally strongly motivates the development of computational approaches for structural 

prediction. Even when protein-protein docking samples correct models, current scoring functions 

struggle to discriminate them from incorrect decoys. The previous incorporation of conservation and 

coevolution information has shown promise for improving protein-protein scoring. Here, we present a 

novel strategy to integrate atomic-level evolutionary information into different types of scoring functions 

to improve their docking discrimination. 

Results: We applied this general strategy to our residue-level statistical potential from InterEvScore 

and to two atomic-level scores, SOAP-PP and Rosetta interface score (ISC). Including evolutionary 

information from as few as ten homologous sequences improves the top 10 success rates of individual 

atomic-level scores SOAP-PP and Rosetta ISC by respectively 6 and 13.5 percentage points, on a 

large benchmark of 752 docking cases. The best individual homology-enriched score reaches a top 10 

success rate of 34.4%. A consensus approach based on the complementarity between different 

homology-enriched scores further increases the top 10 success rate to 40%. 

Availability: All data used for benchmarking and scoring results, as well as a Singularity container of 

the pipeline, are available at http://biodev.cea.fr/interevol/interevdata/ 

Contact: jessica.andreani@cea.fr or guerois@cea.fr 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  

Proteins are key actors in a great number of cellular functions and often 

work in collaboration with others, thereby forming interaction networks. 

Knowledge of the detailed 3D structure of protein-protein interfaces can 

help to better understand the mechanisms they are involved in. Difficulties 

in the experimental determination of protein assembly structures have 

prompted the development of in silico prediction strategies such as 

molecular docking. When no homologous interface structure can be 

identified and used as a template, free docking is used instead, involving 

a systematic search where many interface conformations are sampled 

(Huang, 2014; Porter, et al., 2019). These interface models are then scored 

according to properties such as interface physics, chemistry, and statistics 

(Huang, 2015; Moal, et al., 2013). Guided docking approaches integrating 

complementary sources of information are also becoming increasingly 

popular (Koukos and Bonvin, 2019). 

Over time, protein interfaces are submitted to evolutionary pressure to 

maintain functional interactions. Thus, protein interfaces tend to be more 

conserved than other regions on their surface (Mintseris and Weng, 2005; 

Teichmann, 2002) and signs of coevolution can be detected at protein 

interfaces, where potentially disrupting mutations are compensated for 

with mutations in contacting positions on the protein partner. These 

phenomena of conservation and coevolution can provide useful 

information in the analysis and prediction of their 3D interface structures 

(Andreani, et al., 2020). For example, evolutionary information is at the 

heart of increasingly popular covariation-based approaches, such as 

http://biodev.cea.fr/interevol/interevdata/
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statistical coupling analysis (SCA) (Socolich, et al., 2005) or direct 

coupling analysis (DCA) (Morcos, et al., 2011), for structural proximity 

prediction of residues based on multiple sequence alignments (MSAs). 

These approaches can be used to guide protein folding or to supplement 

predictions of macromolecular interactions (Cocco, et al., 2018; Simkovic, 

et al., 2017). The vast majority of protein interaction site predictors 

successfully use evolutionary information, be it by sequence conservation, 

sequence co-evolution, or through homologous structures (Andreani, et 

al., 2020). 

Evolutionary information can also be especially useful to guide 

molecular docking (Geng, et al., 2019). The InterEvDock2 server 

implements a docking pipeline that uses evolutionary information 

(Quignot, et al., 2018; Yu, et al., 2016). It takes advantage of the spherical 

Fourier-based rigid-body docking programme FRODOCK2.1 (Ramírez-

Aportela, et al., 2016) for the sampling step and hands out a set of ten most 

probable interfaces based on a consensus between three different scores, 

FRODOCK2.1’s mostly physics-based score, SOAP-PP’s atomic 

statistical potential (Dong, et al., 2013) and InterEvScore (Andreani, et al., 

2013). InterEvScore extracts co-evolutionary information from joint 

multiple sequence alignments of the binding partners (called coMSAs), 

but unlike covariation-based approaches such as DCA cited above, 

InterEvScore needs only a small number of homologous sequences to 

improve discrimination between correct and incorrect models, by 

combining coMSAs with a multi-body residue-level statistical potential. 

As seen in the benchmarking of InterEvDock2, InterEvScore presents a 

high complementarity with SOAP-PP (Quignot, et al., 2018). As both 

scores are based on statistical potentials but SOAP-PP has an atomic level 

of detail, we hypothesised that a score integrating evolutionary 

information at an atomic scale might pick up on finer properties to better 

distinguish near-natives from the rest of the decoys.  

In InterEvScore, evolutionary information is given implicitly at 

residue-level through coMSAs and is combined with a coarse-grained 

statistical potential. A major challenge in deriving evolutionary 

information to an atomic level of detail is finding a suitable way of 

representing residue-scale information from coMSAs at an atomic level. 

Here, we present a novel strategy to couple evolutionary information with 

atomic scores to improve model discrimination. We reconstruct an 

equivalent and hypothetical interfacial atomic contact network for each 

interface model and each pair of homologs present in the coMSAs, by 

using a threading-like strategy to generate explicit backbone and side-

chain coordinates. These models can, in turn, be scored with non-

evolutionary atomic-resolution scoring functions such as SOAP-PP 

(Dong, et al., 2013) or Rosetta interface score (ISC) (Chaudhury, et al., 

2011; Gray, et al., 2003).  

Here, we show that including explicit evolutionary information 

improves the top 10 success rate of SOAP-PP and ISC by 6 and 13.5 

percentage points respectively, on a large benchmark of 752 docking cases 

for which evolutionary information can be used (Yu and Guerois, 2016). 

We then use a consensus approach to take advantage of the 

complementarity between different scores. The top 10 success rate of a 

consensus integrating FRODOCK2.1 with InterEvScore and SOAP-PP 

increases from 32% to 36% when including the homology-enriched score 

variants. A more time-consuming consensus combining all scores with an 

explicit homolog representation reaches 40% top 10 success rate. 

2 Methods 

2.1 Docking benchmark 

We evaluated docking methods using the large docking benchmark 

PPI4DOCK (Yu and Guerois, 2016), where unbound structures 

unavailable from experiments were modelled by homology from unbound 

homologous templates. This is especially important since bound docking 

is strongly biased due to shape complementarity (see supplementary Table 

S19). We excluded antigen-antibody interactions due to their specific 

interaction mode and evolutionary properties, leaving 1279 docking cases. 

Each case in PPI4DOCK is associated to a coMSA, i.e. a pair of joint 

MSAs for the two docking partners. Sampling was performed with 

FRODOCK2.1 using models from unbound structures as starting points 

(see supplementary methods) and keeping only the top 10,000 generated 

models. In the supplementary information, we show benchmarking 

performance using ZDOCK 3.0.2 (Pierce, et al., 2011) as an alternative 

sampling program. Near-native models were defined as being of 

Acceptable or better quality following the criteria from CAPRI (Critical 

Assessment of PRediction of Interactions) (Mendez, et al., 2003). 

To focus the study on scoring performance and the usefulness of co-

evolutionary information for this purpose, benchmarking results in the 

main figures and tables are shown on 752 cases that have more than 10 

sequences in their coMSAs and at least one near-native within the top 

10,000 FRODOCK2.1 models (supplementary Tables S1 and S2). In the 

supplementary information, we show benchmarking performance on the 

1279 non-antigen-antibody cases from PPI4DOCK, as well as 230 cases 

from the protein docking benchmark version 5 (Vreven, et al., 2015). 

The 1279 PPI4DOCK cases are split into five difficulty categories 

(supplementary Table S3). 74% of cases are amenable to rigid-body 

sampling but represent a challenge for scoring, including a majority of 

cases (55% of the total) in the ‘easy’ category, with moderate 

conformational changes between unbound and bound structure, and the 

other 19% in the ‘very_easy’ category, with small conformational 

changes. The remaining 26% (‘hard’, ‘very_hard’ and ‘super_hard’ 

categories) correspond to larger conformational changes, and sampling 

can generate an Acceptable model only in very few of those cases. 

Performance was measured by top N success rate, i.e. the percentage of 

cases with at least one near-native in the top N ranked models. We 

especially focus on the top 10 success rate traditionally used as a docking 

metric, and the top 50 success rate since consensus computation typically 

involves the top 50 models of each score (see section 2.2.1).  

2.2 Scoring functions 

In addition to the sampling programme’s integrated score, we rescored 

models and their threaded homologs with InterEvScore, SOAP-PP, and 

Rosetta ISC. In the supplementary information, we also show performance 

when rescoring ZDOCK models with ZRANK (Pierce and Weng, 2007). 

InterEvScore combines co-evolutionary information taken from 

coMSAs with a residue-level statistical potential (Andreani, et al., 2013). 

It was re-implemented to accelerate scoring (see supplementary methods).  

SOAP-PP is an atomic statistical-based score integrating distance-

dependent potentials (Dong, et al., 2013). Here, we use a faster in-house 

implementation of this score (see supplementary methods).  

Rosetta ISC includes a linear combination of non-bonded atom-pair 

interaction energies and empirical and statistical potentials (Chaudhury, et 

al., 2011; Gray, et al., 2003). ISC is calculated by subtracting the energy 

of both monomeric structures from the energy of the complex structure. 

Since Rosetta ISC is sensitive to small variations and clashes at the 

interface, we included high-resolution interface side-chain optimisation 

during ISC scoring (see supplementary methods). Models for which 

Rosetta scoring did not converge after 10 iterations were assigned the 

worst score for that case. As Rosetta ISC scoring can take up to a couple 
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of minutes per structure, we scored only the top 1,000 FRODOCK2.1 

models (noted later 1k) per case rather than 10,000 (noted 10k).   

2.2.1 Consensus scores 

The aim of the consensus is to preferentially select models supported by 

several scores. Consensus calculations were performed similarly to 

InterEvDock2 (Quignot, et al., 2018) to obtain a set of 10 most likely 

models depending on the agreement between several scoring functions. 

Here, we apply consensus scoring to combinations of 3 to 5 different 

scoring functions. For a given set of scoring functions, ordered by their 

individual performances from best to worst performing, the top 10 models 

of each scoring function receive a convergence count based on the number 

of similar models (defined as L-RMSD ≤ 10 Å) that are found in the top 

50 models of each other scoring function. The final 10 consensus models 

are selected iteratively by decreasing convergence count (if > 1). In the 

case of a tie, models are selected according to the ranking order of their 

respective scoring functions. Models are added to the top 10 consensus 

only if they are not structurally redundant with the already selected ones 

(L-RMSD > 10 Å). If necessary, the consensus list is completed up to 10 

models by selecting the top 4, 3, 3 models for a consensus between three 

scoring functions (or the top 3, 3, 2, 2 or top 2, 2, 2, 2, 2 models for a 

consensus between four or five scoring functions, respectively). 

2.3 Docking strategy to integrate evolutionary information 

The proposed homology-enriched docking pipeline consists of four steps 

outlined in Figure 1. First, we dock query proteins A and B for which we 

are trying to predict the 3D structure of the complex, using FRODOCK2.1 

(Ramírez-Aportela, et al., 2016). This results in a set of rotational and 

translational transforms that define a maximum of 10,000 complex models 

(Figure 1A). In parallel, we subsample coMSAs to a subset of M pairs of 

homologs (proteins A1 and B1, A2 and B2, ..., AM and BM, homologs of 

query proteins A and B respectively) (see section 2.3.1). We model the 

unbound structures of these M pairs of homologs, using the threading 

function from RosettaCM’s pipeline (Song, et al., 2013) and the unbound 

query protein structures as templates (see Figure 1B and section 2.3.2). 

We then generate complex equivalents to each query model by applying 

the translational and rotational transforms obtained in the docking step to 

each pair of homologs. Figure 1C illustrates this reconstruction for the first 

pair of homologs (proteins A1 and B1). Finally, we average scores over the 

query model and its homolog models to obtain a final per-model score that 

integrates all the information (Figure 1D). Note that for one case, we have 

to compute (M+1) x N scores to obtain the final ranking of N models. The 

scoring functions we used are described in section 2.2. All steps of the 

pipeline are easily parallelisable to reduce end-user runtime, whether 

through MPI (sampling step) or by splitting over models (scoring steps).  

2.3.1 Subsampling homologs in the coMSAs 

Homologous sequences used in scoring were taken from the coMSAs 

provided with the PPI4DOCK benchmark, which contain homolog pairs 

with minimum 30% sequence identity and 75% coverage to the query 

complex. This aims to ensure that the interaction mode is conserved 

between homologous sequences (Andreani, et al., 2013). The coMSAs 

were reduced to maximum M=40, and then to M=10 sequences (plus the 

query sequence) to limit computational time. Indeed, it was already seen 

with InterEvScore that co-evolutionary information can be extracted from 

alignments with as few as 10 sequences (Andreani, et al., 2013). The 

sequences in the coMSAs are ordered by decreasing average sequence 

identity with the query sequences. This is important when sub-selecting 

sequences to keep a representative subset. Sequence selection was 

performed in three steps. First, the number of sequences was cut to keep 

at most 100 sequences with highest sequence identity to the query, as in 

the InterEvDock2 pipeline. Then the alignment was filtered with hhfilter 

3.0.3 (Remmert, et al., 2011) from the hh-suite package. hhfilter was 

applied with the “-diff X” option on the concatenated coMSAs, adjusting 

the value of X for each case to return a reduced alignment with no more 

than 41 sequences (i.e. the query + 40 homologs). At this stage, we obtain 

coMSA40, the first set of reduced coMSAs with maximum 40 sequences, 

representative of the diversity of the initial coMSAs. Finally, 11 equally 

distributed sequences (i.e. the query + 10 homologs) were uniformly 

selected within coMSA40 to preserve sequence diversity compared to the 

initial coMSAs (see supplementary methods). The final set of reduced 

coMSAs is called coMSA10. 

 

Fig. 1.  Docking pipeline with explicit modelling of model homologs. (A) Upon docking 

of query unbound structures (proteins A and B in green and blue), FRODOCK2.1 outputs 

a rotation and translation matrix to reconstruct the corresponding models.  (B) To generate 

their homologous counterparts, the unbound structures of each homolog (proteins A1 and 

B1, A2 and B2, ..., AM and BM, in various shades of orange and magenta) are threaded based 

on the query unbound structures and the homologous sequence alignments in the coMSAs 

of the query proteins. (C) For each homolog pair (such as homolog 1 illustrated here), 

models can be reconstructed using the same rotation and translation matrix as for the query. 

(D) The final score of each query model (left column) corresponds to the average score 

over itself and its M homologs for a given scoring function. 

2.3.2 Threading models 

Pairwise alignments between the template structure and the homolog 

sequence to be modelled were directly extracted from the reduced 

coMSAs. The templates used for threading were the unbound template 

structures provided in the PPI4DOCK benchmark (Yu and Guerois, 2016) 

so that no information about the bound structure is introduced when 

rescoring homologs (see supplementary methods).  

Rosetta’s threading protocol partial_thread, the first step in the 

RosettaCM pipeline (Song, et al., 2013), was used to thread the 

homologous sequences onto the template structure (Figure 1B). We used 

Rosetta 3.8 (version 2017.08.59291). Insertions (gaps) and termini that 

were missing from the template structure were not modelled. No 

refinement or side-chain optimisation was applied at that stage, since 

InterEvScore and SOAP-PP are not sensitive to small interface clashes, as 

both were developed to score rigid-body docking models. Reconstructed 

interface models (Figure 1C) were not relaxed, as this would be 
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computationally prohibitive and does not bring an obvious performance 

advantage (see supplementary Figure S9). 

3 Results 

3.1 Consensus approach with implicit homology scoring 

In previous work, we integrated evolutionary information implicitly at the 

coarse-grained level by scoring models with residue-based InterEvScore 

(noted IES) (Andreani, et al., 2013). In IES, for each model, we enumerate 

all residue-level interface contacts. We then use a residue-level statistical 

potential to score models by considering all sequences in a coMSA and 

assuming the same contacts were conserved in all homologous interfaces. 

We also combined InterEvScore with complementary scores 

FRODOCK2.1 and SOAP-PP (supplementary Figure S1A) in a three-way 

consensus score, denoted Cons3, which preferentially selects models 

supported by several scores (section 2.2.1) (Quignot, et al., 2018; Yu, et 

al., 2016). Compared to individual scores, we observed a notable boost of 

about 8 points in the top 10 success rate using Cons3, which captures a 

near-native in the top 10 models in 32% of the cases (Table 1 and Figure 

2A). 

This complementarity between scores, in particular SOAP-PP and 

InterEvScore, (supplementary Figure S1A), prompted us to attempt 

atomic-level integration of evolutionary information into the scores. 

Following the pipeline described in methods section 2.3 (Figure 1), in the 

next sections, we include evolutionary information into InterEvScore and 

SOAP-PP through explicit atomic-level homologous models. 

Table 1: Performance of consensus scores including InterEvScore 

implicit homology scoring. Scores used in three-way consensus score 

Cons3 were SOAP-PP on the top 10,000 FRODOCK2.1 models 

(SPP/10k), InterEvScore on full coMSAs and on the top 10,000 

FRODOCK2.1 models (IES/10k) and FRODOCK2.1 (FD2.1). 

Performances of individual scores used in the consensus are reported in 

terms of top 10 and top 50 success rates since consensus calculation relies 

on the top 50 models ranked by each component score. 

Score Top 10 success rate Top 50 success rate 

FD2.1 164 (21.8%) 292 (38.8%) 

IES/10k 182 (24.2%) 287 (38.2%) 

SPP/10k 183 (24.3%) 328 (43.6%) 

Cons3 241 (32.0%) / 

3.2 InterEvScore with explicitly modelled homologs 

For efficiency, we represent homologs at atomic resolution by threading 

their sequences onto the query structure (section 2.3.2). As a first step to 

validate this new representation of evolutionary information, we test the 

performance of InterEvScore on these threaded models and compare it 

with the original InterEvScore. With the threaded models, atomic contacts 

are re-defined in each homolog at an explicit level, rather than implicitly 

deduced from the coMSAs as in the original InterEvScore. In practice, we 

calculate the threaded homolog version of InterEvScore (denoted IES-h) 

by scoring query interface models and their threaded homolog equivalents 

with the InterEvScore statistical potentials (section 2.3). The final score of 

each query model is the average over the query model and its homologs.  

Table 2 and Figure 2A show the performance of IES-h40, i.e. IES-h 

computed using threaded homologs from the set of reduced coMSAs with 

a maximum of 40 sequences (coMSA40, see section 2.3.1). Results for the 

original InterEvScore with complete coMSAs (IES) and coMSAs40 (IES40) 

are also shown for comparison. Reducing the number of sequences to 40 

does not strongly affect the top 10 and top 50 success rates. However, the 

top 10 success rate increases from 23.8% to 27.0% when using explicit 

threaded models (IES-h40) instead of implicit coMSA information (IES40). 

Table 2: Performance of InterEvScore using coMSAs without or with 

threaded models. Top 10 and top 50 success rates of InterEvScore on 

complete coMSAs (IES, reported in Table 1) and coMSA40 (IES40) 

compared to InterEvScore using explicit threaded models of homologs in 

coMSA40 (IES-h40) on 10,000 models (/10k). Performances were 

measured on 752 benchmark cases. 

Score Top 10 success rate Top 50 success rate 

IES/10k 182 (24.2%) 287 (38.2%) 

IES40/10k 179 (23.8%) 284 (37.8%) 

IES-h40/10k 203 (27.0%) 335 (44.5%) 

 Fig. 2.  Success rate as a function of the number of ranked models for individual and 

consensus scores. We plot success rates on 752 PPI4DOCK cases, as a function of the 

number of top N models with N going from 1 to 100, for (A) FRODOCK2.1 (FD2.1), 

SOAP-PP (SPP) and InterEvScore (IES) individual and consensus scores (dotted lines) on 

10,000 models (10k) and their homology-enriched variants on coMSA40 (-h40, solid lines); 

(B) Rosetta ISC score (dotted line) together with homology-enriched variants of individual 

scores on coMSA10 (-h10) and 1,000 models (1k) or the homology-enriched subset of 150 

models (150h) and homology-enriched consensus scores. Consensus scores produce only a 

selection of 10 models, hence they stop at N=10. We obtained a reference performance 

curve with 95% confidence interval (in grey) by shuffling at random the top 10,000 (A) or 

top 1,000 models (B) and assessing the first N models (see supplementary methods). 
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The difference in performance between IES40/10k and IES-h40/10k can 

be explained by the fact that, in IES-h40, contacts are not extrapolated from 

the query interface network anymore but are redefined in each homolog 

based on their modelled interface structure. 

3.3 Homology-enriched SOAP-PP 

Having explicit structures at atomic resolution corresponding to each 

homolog enables us to score them directly using an atomic potential such 

as SOAP-PP (Dong, et al., 2013), which might be able to better exploit the 

atomic detail of homologs for the final ranking of query interface models. 

As for the threaded version of InterEvScore, homology-enriched SOAP-

PP (SPP-h40) consists in the average SOAP-PP score over all homologs. 

SPP-h40 performs better than SOAP-PP on the query interface models 

alone (Table 3 and Figure 2A). Using threaded homology models in this 

way gives a large performance boost to SOAP-PP (+6 percentage points 

on the top 10 success rate). SPP-h40 also outperforms InterEvScore and 

IES-h40 (section 3.2) as well as the FRODOCK2.1 score (section 3.1).  

Table 3: Performance of SOAP-PP against SPP-h40. Top 10 and top 50 

success rates of SOAP-PP (SPP) compared to its homology-enriched 

version SPP-h40 over sequences in coMSA40 on 10,000 models (/10k). 

Performances were measured on 752 benchmark cases. 

Score Top 10 success rate Top 50 success rate 

SPP/10k 183 (24.3%) 328 (43.6%) 

SPP-h40/10k 228 (30.3%) 365 (48.5%) 

3.4 Homology-enriched Rosetta interface score (ISC) 

Since we build atomic-level homologous interface models, we can score 

them explicitly using a physics-based score such as Rosetta ISC. As 

Rosetta scoring is much more computationally expensive (about 750 times 

slower) than SOAP-PP and InterEvScore, to compute homology-enriched 

ISC, the number of models was reduced to 1,000 (as ranked by 

FRODOCK2.1) and the number of homologs to 10 (coMSA10, section 

2.3.1). 

As above, homology-enriched ISC consisted in the average score of the 

query and its homologous interface models (ISC-h10). For easier 

comparison, homology-enriched InterEvScore and SOAP-PP were 

evaluated in the same conditions (i.e. 1,000 models and coMSAs10) (Table 

4 and Figure 2B). Their success rates are very similar to those with 10,000 

models and coMSAs40 (supplementary Table S4). Even though ISC on 

query models performs worse than SPP-h and IES-h, ISC-h10 largely 

outperforms the best-performing individual score, SPP-h10, with 34.4% 

top 10 success rate (259 cases) compared to 30.2% (227). With only 165 

successful cases in common, SPP-h10 and ISC-h10 remain very 

complementary (supplementary Figure S1B). 

Note that for scores calculated on the top 1,000 FRODOCK2.1 models, 

success rates are technically capped to 77.1%, as only 580 cases out of the 

752 in our benchmark have a near-native within this subset of models. In 

light of this, the ISC-h10/1k performance is all the more remarkable.  

 

 

Table 4: Scoring performance of Rosetta homology-enriched ISC. 

Scoring performance of ISC on query interface models only and using the 

threaded homology models (ISC-h10) on top 1,000 FRODOCK2.1 models 

(1k) and coMSA10 as well as the performance of SPP-h10 and IES-h10 on 

1,000 FRODOCK2.1 models with coMSA10 for easier comparison. 

Performances were measured as the top 10 and top 50 success rates on 752 

benchmark cases. 

Score Top 10 success rate Top 50 success rate 

IES-h10/1k 200 (26.6%) 338 (44.9%) 

SPP-h10/1k 227 (30.2%) 362 (48.1%) 

ISC/1k 157 (20.9%) 301 (40.0%) 

ISC-h10/1k 259 (34.4%) 360 (47.9%) 

3.4.1 Using ISC to re-score homology-enriched interface models 

ISC-h10 showed the highest top 10 success rate from all scores tested 

above, but scoring 1,000 x 11 models with Rosetta ISC is excessively time 

consuming in a generalised docking context as it takes approximatively 

137 CPU hours per case (supplementary Table S5). One way to alleviate 

the total scoring time is to score only a pre-selected amount of interface 

models, using Rosetta ISC as a second step in the scoring pipeline.  

In Cons3, we pre-selected the top 50 models of FRODOCK2.1, Inter-

EvScore, and SOAP-PP. Similarly, here we use the top 50 models of the 

top-performing homology-enriched score variants tested above, namely 

SPP-h40/10k and IES-h40/10k, as well as FRODOCK2.1. These scores 

have a high complementarity in terms of top 10 success rate with only 67 

cases found in common between all three (supplementary Figure S1C). 

Using this subset of 150 pre-selected models for ISC scoring (referred to 

with /150h) reduced scoring times approximately by a factor 7. We enrich 

near-natives in this set of 150 models since they were pre-selected by three 

already well-performing scores, but only 476 out of 752 cases in our 

benchmark possess a near-native in this subset.  

In terms of the top 10 success rate, both ISC-h10 and ISC perform better 

on 150 than 1,000 models with 35.5% and 28.9% top 10 success rate 

instead of 34.4% and 20.9%, respectively (Tables 4 and 5 and Figure 2B). 

Here again, the addition of evolutionary information to ISC through the 

threaded homolog models remarkably increases its performance. ISC-

h10/150h has the best performance of all tested scores so far, for a much 

lower computational cost than ISC-h10/1k. 

Table 5: Performance of ISC and ISC-h10 on 150 pre-selected models. 

Below are summarised the top 10 success rates of ISC and ISC-h10. Top 

10 success rates of ISC/150h and ISC-h10/150h were calculated after a pre-

selection of a maximum of 150 models taken from the 3 x top 50 models 

of IES-h40/10k, SPP-h40/10k, and FRODOCK2.1. Scoring was performed 

on all 752 benchmark cases. 

Score Top 10 success rate Top 50 success rate 

ISC/150h 217 (28.9%) 398 (52.9%) 

ISC-h10/150h 267 (35.5%) 404 (53.7%) 

3.5 Homology-enriched consensus scoring 

As a first step, we calculate Cons3-h, the homology-enriched variant of the 

Cons3 consensus. Calculating a three-way consensus using higher-

performing homology-enriched variants (Cons3-h) instead of their original 

counterparts (Cons3) increases the top 10 success rate from 32% to 36% 

(Table 6 and Figure 2A). Consensus Cons3-h performs as well as ISC-
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h10/150h, while calculated on the same top 150 models, and computation 

is about 20 times faster for Cons3-h than for ISC-h10/150h. 

Out of the 271 and 267 successful cases for Cons3-h and ISC-h10/150h, 

only 198 cases are in common. Moreover, ISC and ISC-h10 remain 

complementary to SPP-h40/10k, IES-h40/10k, and FRODOCK2.1 

(supplementary Figure S1D and S1E). This led us to test four- and five-

way consensus approaches to combine ISC optimally with other 

homology-enriched scores. We tested two four-way consensuses that 

integrate ISC without homology on 1,000 or 150 models (Cons4-h/1k and 

Cons4-h/150h respectively) and two five-way consensuses that integrate 

ISC both with and without homology on 1,000 or 150 models (Cons5-h/1k 

and Cons5-h/150h respectively). Performances are reported in Figure 2B 

and Table 6, together with time estimates when parallelising the whole 

pipeline on 4 CPUs.  

With five-way consensus Cons5-h/1k, the top 10 success rate rises to 

303 cases (40.3%). Unfortunately, computation time strongly increases, 

since we have to compute ISC-h10 on 1,000 models. The most time-

effective consensus, Cons3-h, has 36.0% top 10 success rate and the same 

top 1 success rate as Cons5-h/1k (Figure 2B and supplementary Figure S2). 

Table 6: Performance of homology-enriched consensus scores. 

Performance of three-, four- and five-way consensus scores in terms of 

top 10 success rates on 752 benchmark cases and approximate timescales 

for the whole pipeline (including sampling with FRODOCK2.1, 

homology model generation, scoring steps, and consensus calculation). 

Scores used in Cons3 were SOAP-PP/10k, InterEvScore/10k, and 

FRODOCK2.1. Scores used in all homology-based consensuses (ConsX-

h) were FRODOCK2.1, SPP-h40/10k, IES-h40/10k, ISC and ISC-h10. The 

three-way consensus included the first three scores, four-way consensuses 

included all scores up to ISC and five-way consensuses included all of 

them. ConsX-h/150h included ISC scores over 150 models only and 

ConsX-h/1k included ISC scores over 1k models.  

Score Top 10 success rate Whole pipeline time estimates 

on 4 Intel® Xeon® E5 CPU* 

Cons3 241 (32.0%) 15 min 

Cons3-h 271 (36.0%) 15 min 

Cons4-h/150h 273 (36.3%) 45 min 

Cons4-h/1k 282 (37.5%) 3 h 15 

Cons5-h/150h 289 (38.4%) 5 h 30 

Cons5-h/1k 303 (40.3%) 34 h 30 

* all steps are parallelisable using MPI (sampling) or over the models (scoring) 

4 Discussion 

In InterEvScore (Andreani, et al., 2013), evolutionary information 

improved protein-protein scoring performance when given implicitly 

through coMSAs and coupled with a residue-level statistical potential. 

Combining InterEvScore with complementary scoring functions 

FRODOCK2.1 and SOAP-PP by computing a consensus (Quignot, et al., 

2018; Yu, et al., 2016) improved over the individual scores, reaching 32% 

top 10 success rate (Table 1). However, this strategy did not take full 

advantage of the three scores’ complementarity. We thus decided to 

combine directly evolutionary information from coMSAs with atomic 

scores such as SOAP-PP. To this aim, we scored threaded homologous 

interface models together with each query interface model.   

With this explicit implementation of evolutionary information, a variant 

of InterEvScore where we scored models and their homologs with a 

residue-level statistical potential (IES-h) had a slightly improved success 

rate compared to the implicit homology version (Table 2). The explicit 

representation of homologous models enabled us to build homology-

enriched versions of atomic scores SOAP-PP (SPP-h) and Rosetta ISC 

(ISC-h). For both, adding homology drastically improved top 10 success 

rates (Table 3 and Table 4) even when coMSAs were down-sampled to at 

most 10 homologous sequences. The Rosetta homology-enriched version, 

ISC-h10, had outstanding performances, but it also was the most time-

consuming score, about 750 times slower than SOAP-PP or InterEvScore. 

The first compromise between computation time and performance was to 

run ISC-h10 on a pre-selection of 150 models defined by the top 50 models 

of SPP-h40/10k, IES-h40/10k, and FRODOCK2.1 (Table 5). This score 

(ISC-h10/150h) had a similar top 10 success rate (36%) to a much faster 

consensus score involving the same top 150 models. Taking further 

advantage of their complementarity, different four- and five-way 

consensuses managed top 10 success rates from 36.3% to 40.3% at 

runtimes ranging from 45 minutes to 34.5 hours on four CPUs (Table 6). 

We further tried to understand the origin of the large performance 

improvements obtained through homology enrichment. We found that the 

performance improvement of the homology-enriched scores is driven 

positively by better recognition of correct models (up-weighted by 

conserved homologous interfaces), rather than negatively by the down-

ranking of incorrect models due to clashing or incomplete homologous 

interfaces (since insertions in reference to the query structures were not 

modelled). Indeed, the number of gaps or the number of clashes 

(heteroatom contacts under 1.5 Å) at the interface of homologous interface 

models do not strongly correlate with the ISC-h10 score. Additionally, 

ranking using only the repulsive van der Waals component of the Rosetta 

score (fa_rep) performs extremely poorly in comparison to other scoring 

schemes (supplementary Table S6). Finally, IES-h, SPP-h, or ISC-h score 

variants where only the worst-scored homologous interface models are 

used showed systematically worse performance than using the full range 

of homologous models (supplementary Table S6). 

Improvement of SOAP-PP and Rosetta ISC by homology enrichment 

is significant (supplementary Figure S3), robust to a change in evaluation 

metrics (supplementary Table S7), and consistent over difficulty 

categories (supplementary Table S8). The strongest relative gain for 

homology-enriched scores occurs on “very_easy” and “easy” cases, which 

correspond to small to moderate conformational changes between 

unbound and bound structure (supplementary Tables S8 and S12). 

Consensus scoring also consistently improves results over the 

“very_easy”, “easy” and “hard” categories, in order of decreasing 

improvement. We hypothesise that correct ranking of very_easy and easy 

models mainly depends on the ability to score positively native-like 

models. More difficult cases typically are out of the scope of rigid-body 

sampling and would require integration of flexibility, an ongoing 

challenge of protein docking (Desta, et al., 2020; Torchala, et al., 2013). 

Even in those difficult cases, when a near-native model can be generated 

in the sampling step, we see a positive effect of our improved methodology 

using atomic-level homology information and consensus approaches. 

We demonstrate the robustness of our approach when sampling with 

ZDOCK 3.0.2 (Pierce, et al., 2011) instead of FRODOCK: when 

evolutionary information is included explicitly, we also observed a clear 

improvement in the success rates (supplementary Figure S6, Tables S13-

S14). Additionally, homology enrichment also improves performance of 

ZRANK (Pierce and Weng, 2007) for rescoring ZDOCK models; the 

increase in top 10 success rate is comparable for ZRANK and SOAP-PP 

(supplementary Figure S6). Interestingly, combining top 5 Cons3-h 

models from the pipeline applied to ZDOCK and FRODOCK models is 

more successful than using the top 10 Cons3-h models from any of the two 

sampling programmes (supplementary Table S15). 



Homology-enriched protein-protein scoring 

Finally, we demonstrate the robustness of our strategy by applying it to 

the widely-used protein docking benchmark (supplementary Figure S8, 

Tables S16-S17). This also enables comparison with iScore (Geng, et al., 

2019): the top 10 Cons3-h models combined from ZDOCK and 

FRODOCK compare favourably to iScore over the subset of 21 cases from 

benchmark version 5 that was presented in the iScore publication 

(supplementary Table S18). 

In this work, we developed a strategy to enrich scoring functions with 

evolutionary information by including atomic-level models for as few as 

ten homologs. This strategy improves the performance of several scores 

with different properties: InterEvScore, SOAP-PP, Rosetta ISC, and 

ZRANK. We provide a Singularity container (Kurtzer, et al., 2017) as a 

powerful means to re-run our docking pipeline. The container packages 

our docking tools and internally supports parallelisation. Thanks to the 

container, our homology enrichment strategy could be extended to other 

scores, as the container also allows users to generate all models (including 

homolog models) for rescoring with a different scoring function. 

The homology enrichment strategy that we propose can in principle be 

applied to any scoring function with at most a ten-fold increase in runtime. 

This enrichment works with a very small number of sequences compared 

e.g. to the large MSAs needed by covariation methods to pick up 

coevolutionary signal, highlighting complementarity between the two 

approaches, which may be exploited by using additional DCA-derived 

constraints, e.g. in intermediate cases with a few hundred homologous 

sequences (Cong, et al., 2019; Simkovic, et al., 2017). 

The docking success boost also opens interesting perspectives 

regarding the large-scale application of structural prediction to interaction 

networks, although sampling remains difficult for cases with large 

conformational changes upon binding. Evolutionary information can also 

be used to predict structures of interfaces between a globular protein and 

a peptide or a disordered region (Andreani, et al., 2020). Extension of the 

atomic-level homology enrichment strategy to these interaction types 

would require careful analysis, as evolutionary signals are more difficult 

to extract for low complexity regions. Finally, with the rise of machine 

learning techniques in computational biology, one can expect interesting 

future developments using these approaches to further enhance the 

extraction of (co)evolutionary signal from coMSAs. 
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